منابع مشابه
Discrete Groups and Non-riemannian Homogeneous Spaces
A basic question in geometry is to understand compact locally homogeneous manifolds, i.e., those compact manifolds that can be locally modelled on a homogeneous space J\H of a finite-dimensional Lie group H. This means that there is an atlas on a manifold M consisting of local diffeomorphisms with open sets in J\H where the transition functions between these open sets are given by translations ...
متن کاملTb-theorem on non-homogeneous spaces
0 Introduction: main objects and results 3 0.1 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 0.2 An application of T1-heorem: electric intensity capacity . . . . . . . . . . . . 7 0.3 How to interpret Calderón–Zygmund operator T? . . . . . . . . . . . . . . . 9 0.3.1 Bilinear form is defined on Lipschitz functions . . . . . . . . . . . . . 10 0.3.2 Bilin...
متن کاملFrames and Homogeneous Spaces
Let be a locally compact non?abelian group and be a compact subgroup of also let be a ?invariant measure on the homogeneous space . In this article, we extend the linear operator as a bounded surjective linear operator for all ?spaces with . As an application of this extension, we show that each frame for determines a frame for and each frame for arises from a frame in via...
متن کاملLocalization operators on homogeneous spaces
Let $G$ be a locally compact group, $H$ be a compact subgroup of $G$ and $varpi$ be a representation of the homogeneous space $G/H$ on a Hilbert space $mathcal H$. For $psi in L^p(G/H), 1leq p leqinfty$, and an admissible wavelet $zeta$ for $varpi$, we define the localization operator $L_{psi,zeta} $ on $mathcal H$ and we show that it is a bounded operator. Moreover, we prove that the localizat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Topology and its Applications
سال: 2007
ISSN: 0166-8641
DOI: 10.1016/j.topol.2006.04.019